金属的物理性能主要考虑:
(1)密度(比重):ρ=P/V单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。
(2)熔点:金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。(3)热膨胀性随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。在实际应用中还要考虑比容(材料受温度等外界影响时,单位重量的材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。
(4)磁性能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。
(5)电学性能主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。
四川金属加工厂|成都钢板加工;四川罐体加工|成都不锈钢加工
我国规定的需要检验的进出口金属材料类商品主要有生铁、钢锭、钢坯、型 材、线材、金属制品、有色金属及其制品等。 进出口钢材的品质、规格一般在合同中订明,进口钢材中采用日本Xiff’标 准JlsG系列和德国工业标准DIN系列的较氨出口钢材一般按中国标准检验;关 于进口镀锌铁皮、马口铁、硅钢片的外观缺陷的检验按国家商检局的有关规 定执行。国外的、装箱清单、品质证书、重理明细单、残损证明、商务 记录是有关重量、质量、数量、残损等检验鉴定的重要依据。 金属材料类商品一般是由国家商检局或由其他商检机构实施检验。对于大批 量的进口金属材料,可在出厂前在国外制造厂进行检验;对于进口金属材料 批量很大的专业单位,其本身检验设备齐全,技术力量较强的,经商检机构 审核同意后,允许对其所进口的钢材在向商检机构申报后进行质量的初验; 出口金属材料时,必须进行出厂检验,商检机构在生产过程中或出厂前还进 行不定期的抽查检验,并以衡器抽验重量,核对批次、唛头、标记等。 金属材料以数量计价的做数量检验,接重量计价的则做重量检验。钢材的尺 寸规格检验,包括钢板的厚、宽、长;圆钢的直径:角钢的边长;槽钢的高 度和槽宽;钢管的直径和壁厚等。镀锌铁皮、马口铁的表面不得有伤痕、凹 坑、皱纹、露铁等。金属材料的机械及工艺性能检验,包括合金钢热处理后 的机械性能检验;锅炉管和石油管的水压试验、扩口试验等。金属材料的化 学咸分分析试验,根据不同的用途,按标准规定以化学分析和仪器分析的方法,分析测定各种元素的含量,包括非金属元素和有害元素。
快速成型属于离散/堆积成型。它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。 快速成型的工艺过程具体如下:
四川金属加工厂|成都钢板加工;四川罐体加工|成都不锈钢加工
l )产品三维模型的构建。由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、 CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。
2 )三维模型的近似处理。由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用 3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。 STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。典型的CAD 软件都带有转换和输出 STL 格式文件的功能。
3 )三维模型的切片处理。根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。间隔一般取0.05mm~0.5mm, 常用 0.1mm 。间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。
4 )成型加工。根据切片处理的截面轮廓,在计算机控制下,相应的成型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工作台上一层一层地堆积材料,然后将各层相粘结,最终得到原型产品。
5 )成型零件的后处理。从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,进一步提高其强度。
快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(Laser Technology),例如:光固化成型(SLA )、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(Jetting Technoloy),例如:熔融沉积成型(FDM)、三维印刷( 3DP )、多相喷射沉积( MJD )。下面对其中比较成熟的工艺作简单的介绍。
1、SLA(Stereolithogrphy Apparatus)工艺 SLA 工艺也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。 1988 年美国 3D System公司推出商品化样机SLA-I,这是世界上台快速成型机。SLA 各型成型机机占据着 RP 设备市场的较大份额。
SLA 技术是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后.未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。 SLA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
2、LOM(Laminated Object Manufacturing,LOM)工艺LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于 1986 年研制成功。LOM工艺采用薄片材料,如纸、塑料薄膜等。片材表面事先涂覆上一层热熔胶。加工时,热压辊热压片材,使之与下面已成型的工件粘接。用CO2激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格。激光切割完成后,工作台带动已成型的工件下降,与带状片材分离。供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域。工作合上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚。再在新层上切割截面轮廓。如此反复直至零件的所有截面粘接、切割完。最后,去除切碎的多余部分,得到分层制造的实体零件。
LOM 工艺只需在片材上切割出零件截面的轮廓,而不用扫描整个截面。因此成型厚壁零件的速度较快,易于制造大型零件。工艺过程中不存在材料相变,因此不易引起翘曲变形。工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以 LOM 工艺无需加支撑。缺点是材料浪费严重,表面质量差。
3、SLS(Selective Laser Sintering)工艺 SLS工艺称为选域激光烧结,由美国德克萨斯大学奥斯汀分校的C.R.Dechard于 1989 年研制成功。 SLS工艺是利用粉末状材料成型的。将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的CO2激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接。当一层截面烧结完后,铺上新的一层材料粉末,有选择地烧结下层截面。
四川金属加工厂|成都钢板加工;四川罐体加工|成都不锈钢加工
烧结完成后去掉多余的粉末,再进行打磨、烘干等处理得到零件。
SLS工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件,特别是可以制造金属零件。这使SLS工艺颇具吸引力。SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。
4、3DP (Three Dimension Printing)工艺三维印刷工艺是美国麻省理工学院E-manual Sachs等人研制的。已被美国的Soligen公司以DSPC(Direct Shell Production Casting)名义商品化,用以制造铸造用的陶瓷壳体和型芯。
3DP 工艺与SLS工艺类似,采用粉末材料成型,如陶瓷粉末、金属粉末。所不同的是材料粉末不是通过烧结连结起来的,而是通过喷头用粘结剂(如硅胶)将零件的截面“印刷”在材料粉来上面。
用粘结剂粘接的零件强度较低,还须后处理。先烧掉粘结剂,然后在高温下渗人金属,使零件致密化,提高强度。
5 . FDM (Fused Depostion Modeling)工艺 熔融沉积制造( FDM )工艺由美国学者Scott Crump于 1988 年研制成功。 FDM 的材料一般是热塑性材料,如蜡、 ABS 、尼龙等。以丝状供料。材料在喷头内被加热熔化。喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结.
工程材料属性
当询问到重要性的排序,快速原型的使用者通常会声明材料属性是最重要的考虑。致力于工业需求,符合这些预期用来生产的材料的材料属性是很重要的。而这是FDM技术最重要的强项之一。当Stratasys公司制造用于FDM技术的所有材料,每一项都是从商业上可用的热塑性树脂来生产。
ABS: 所有的FDM系列产品都提供ABS作为材料选项,而接近90%的FDM原型都是由这种材料制造。使用者报告说ABS的原型可以达到注塑ABS成型强度的80%。而其它属性,例如耐热性与抗化学性,也是近似或是相当于注塑成型的工件,其耐热度为摄氏93.3度。这让ABS成为功能性测试应用的广泛使用材料。
Polycarbonate: 可以在Titan机型上使用的一种新式RP材料--polycarbonate –正在快速成长。增加强度的polycarbonate比ABS材料生产的原型更经得起力量与负载。许多使用者相信该材料生产的原型可以达到注塑ABS成型的强度特性,其耐热度为摄氏125度。
四川金属加工厂|成都钢板加工;四川罐体加工|成都不锈钢加工
其它材料: FDM技术还有其它的专用材料。这些包含polyphenylsulfone、橡胶材质以及蜡材。橡胶材质是用来作类似橡胶特性的功能性原型。蜡材是特别设计来建立脱蜡铸造的样品。蜡材的属性让FDM的样品可以用来生产类似铸造厂中的传统蜡模。Polyphenylsulfone,一种应用于Titan机型的新工程材料,提供高耐热性与抗化学性以及强度与硬度,其耐热度为摄氏207.2度。
图2 PPSF耐高温工程材料应用于咖啡壶设计
Stratasys宣布已经针对FDM快速原型系统Titan发表PPSF材料。在各种快速原型材料之中,PPSF (或是称为 polyphenylsulfone)有着的强韧性、耐热性、以及抗化学性。
公司主营:
四川金属加工厂|成都钢板加工;四川罐体加工|成都不锈钢加工;四川拉弯厂|成都汽车大梁加工厂;成都金属加工|金属剪板;四川金属折弯|成都金属拉弯;成都金属卷板|成都等离子切割;成都广告柱制作|成都金属弯管|成都冲压|成都焊接