电阻焊具有的采用内部热源、热量集中、热影响区小、产品变形小能获得较好的表面加工质量、易操作、不使用外加焊接耗材等特点,使其成为焊接质量稳定、生产效率高、易于实现自动化大规模生产的目前最常用的焊接方法之一,广泛应用于汽车车辆、航空航天、家电电器、钢制家具、交通设施、薄壁容器、汽车零部件等多种制造领域,特别是近年来我国汽车工业飞速发展,促使电阻焊应用不断增加,我国电阻焊机产量逐年大幅提升。电阻焊机年产量由数年前的数千套跃升到近年来的数万套。
电阻焊机在汽车工业上应用,主要是将冲压成形的薄板结构的车身覆盖件在其工件搭接连接处利用电阻热熔化金属形成焊点,将焊件联为一体。一台轿车车身的焊点约在3500~5000点之间。汽车车身点焊是电阻焊的主要形式之一,汽车车身焊装用的点焊设备占全部电阻焊产品的90 % 以上。
用于汽车车身焊装用的点焊机主要有三类:
普通点焊机、多点焊机和点焊机器人。
普通点焊机是适用于各种场合、各类焊接对象的通用点焊设备,也是组成汽车焊装自动化生产线的主要设备。汽车焊装自动化生产线根据其年生产纲领、汽车年产量不同,每条生产线需普通点焊机几十台到几百台不等。普通点焊机根据机器结构和应用场合的不同又分为移动式点焊机和固定式点焊机;移动式点焊机根据其结构不同,又分为悬挂式点焊机和手提式点焊机。
多点焊机是为焊装特定工件设计、制造的专用焊接设备,其优点是生产效率高,适合大批量单品种生产,适用于焊装结构形状复杂、焊点密集、接头搭边小、操作困难、焊接质量难以保证等因素的工件。其缺点是设备投资多、专用性强,将逐步由焊接机器人和相应工装夹具组合取代。多点焊机除用于焊接各种车辆构件之外,还应用于家用电器如电冰箱、洗衣机,钢制家具、交通设施、板式散热器等各种薄金属构件制造行业。
机器人无论在国际还是国内,近年来发展速度不断加快,应用领域越来越广,新技术不断采用,机器人数量越来越多。汽车厂使用的机器人主要用于搬运、焊接、涂敷和装配等工作。汽车厂冲压、焊装、涂装及总装四大工序中使用机器人的水平和数量,代表着该厂自动化、现代化的水平。国外全部使用机器人的无人操作汽车厂屡见不鲜渐成主流,这也将是国内汽车工业发展到一定阶段的必然产物和发展方向。应用机器人不仅能进行复杂的工艺操作、适应恶劣工作环境,取代笨重、单调、重复的人工体力劳动,保证产品质量,提高工效、节约能源、安全生产、消除一切人为影响产品质量因素,还能迅速组成柔性生产系统,特别适宜于新产品开发和多品种生产需要,产品换型上马快、周期短、应变能力强。
无论哪种类型的点焊机,其结构均由三大部分组成:电源及控制装置(阻焊控制器)、能量转换装置(焊接变压器)和焊接执行机构(点焊钳或点焊枪)。上文提到的三种类型的点焊机,其主要区别在于焊接执行机构不同。普通点焊机是由工人手抱点焊钳逐点对工件焊接,多点焊机顾名思义是由安装在多种形式机架上的多把点焊枪同时焊接,点焊机器人模仿人工动作使用安装在机械手臂上的点焊钳对工件焊接。
现代电阻焊技术和工艺的发展对阻焊控制器提出了更高的要求,这些要求离开了电子计算机是无法实现的。阻焊控制器控制电路在经历了分立元件、集成电路等发展阶段之后,目前已进展到以单片微型计算机为主的阶段。计算机的应用使阻焊控制器的功能更加强大、性能更加完善、可靠性进一步提高。
现代阻焊控制器应具有下列功能:
1)可靠地控制电阻焊机接通、关断电源;
2)焊接电流可调;
3)焊接时间可调且无误差;
4)能够实现焊接过程各部分简单或复杂的循环;
5)能够存储多套焊接规范;
6)能够产生多种焊接电流波形;
7)具有多次通电功能(多脉冲焊接);
8)具有对电极压力进行闭环控制功能;
9)具有尽可能多的故障自诊断和报警、显示功能;
10)能够实现焊接质量监控。
电阻焊质量监控包括实时稳定焊接参数和反映焊点状态两个方面。实现电阻焊质量监控对于提高焊接接头的可靠性,保证焊接质量具有重要意义。
目前,阻焊控制器所采用的质量监控方式主要为在电源电压补偿基础上实施恒流控制。恒流控制是一种简单可靠、易于实现的方法,通过电流采样(通常是初级电流)与给定值比较,通过调整主电力开关——晶闸管的导通角调整焊接变压器输入电压来保证次级电流的恒定。恒流控制在电源电压波动和焊接回路阻抗变化时,可以稳定焊接电流,从而保持焊点熔核尺寸一致,保证了焊接质量。但是,它只是控制焊接回路电流的恒定,不是控制形成焊点的电流恒定,因此该方式无法克服影响电流密度的因素,如电流分流、电极磨损等。由于恒流监控检测电流异常,对焊接电流进行补偿时,可能影响焊接速度。对采用程序控制的多点焊机以及点焊机器人来说,出现电流异常可能导致程序出错。
除了恒流控制之外,动态电阻监控、热膨胀监控、超声波监控、红外监控等监控方式都有产品运用。
动态电阻即焊点加热冷却过程中电阻变化的规律,可以较好地反映焊点熔核的形成过程,对焊件的表面状态、材料厚度变化、电流分流以及电源电压变化都有较灵敏的反映,它可以由测量焊接电流和电极间电压经计算求得。同理,形成焊点的能量——焊接电流与电极间电压的乘积,也可作为监控的信息。
电阻焊控制器还应具有功率因数自适应、电极磨损焊接电流自动补偿及电极更新报警、方便的中文菜单式编程等多种功能。有群控接口,便于焊机之间通信和对焊机进行集中管理,使用上位计算机及集中控制管理器可实现对几十台以至几百台控制器联网和集中管理。
目前广泛使用的电阻焊机主要还是单相交流工频焊机,是一种大容量的用电设备。主电力开关——晶闸管导通、关断50 Hz交流电,焊接变压器将电能变换成低电压,几伏到二十几伏;大电流,常用的轿车车身焊接电流约8000到15000 A;底盘和某些零部件需要的焊接电流还要大。虽然要将焊机均衡安装到三相电源上,但设备工作的不确定性,无法保证三相电源平衡用电;多台焊机同时通电将使网压大幅度下降,功率因数降低,影响焊接质量; 晶闸管元件的非线性使电源正弦波波形发生严重畸变,产生电磁干扰。另外,单相交流电阻焊机尤其是分体式悬挂点焊机焊接时约90 % 以上的能量消耗在焊接回路(主要是通水焊接电缆)上,能源利用率极低。因此,无论从节能或电网平衡角度,还是从焊接质量及对材料的适用性角度考虑,单相交流工频电阻焊电源都不是一种理想的电源。
从发展情况来看,近一、二十年来工频电阻焊控制技术没有取得重大突破性进展,还停留在恒流控制、恒电压控制等早期控制技术上。而像恒功率(或恒热量)控制,由于工频控制速度较低(周波数量级,20ms/周波)并未取得较好的应用结果。动态电阻监控虽然是一种较为理想的质量监控方法但由于其采样传感器的复杂性和某些不适用的材料限制例如不锈钢板材其电阻曲线为平特性,生产中并未得到广泛推广,只有少量产品应用在航空航天飞行器焊接中。因此对电阻焊控制技术研究的重点应放在逆变式电阻焊机和机器人焊钳等新产品上。
在工频阻焊控制器研究上,除了焊接质量监控外,还应在某些有用的自检和保护功能方面以及可靠性方面下功夫,主要有:
1)电极粘连检测功能,这是机器人焊钳控制和多点焊机、自动焊专机必须具备的功能。
2)焊接变压器击穿时,空气开关自动跳闸保护功能,该功能关系到人身安全。
移动式点焊机是汽车车身焊装自动化生产线上完成汽车车身组焊任务的主要设备,适用于焊接结构尺寸大、形状复杂、不便于移动的焊件和大型薄壁结构工件。移动式点焊机中的悬挂式点焊机又分为两种结构形式,一种是阻焊控制器与焊接变压器分开布置,控制器与焊接变压器使用软电缆进行电气连接的分体式悬挂点焊机,我国从苏联、日本等国引进的早期产品以及我国二十世纪九十年代产品均以此为主。另一种是同体式悬挂点焊机,将阻焊控制器和焊接变压器组装于一体,整机结构紧凑合理;节省使用空间、安装材料和动力管道,操作控制器方便;欧美国家均使用该形式焊机,也是目前我国移动式点焊机的主导产品。两种焊机的焊接执行机构是完全相同的,都是由通水焊接电缆连接点焊钳传递焊接电流,通常配两把焊钳轮流工作。其优点为操作灵活方便、焊钳形式多样。缺点为焊接回路长、阻抗大、功率因数低、功率损耗大;同时通水焊接电缆由于在大电流情况下频繁扭曲使用,使通水焊接电缆成为该类焊机的主要“耗材”。二十世纪九十年代七所高科公司销售的悬挂式点焊机产品70 % 以上为分体式悬挂点焊机,近年来悬挂式点焊机产品90 % 以上为同体式悬挂点焊机。从产品功率参数看,目前售出的悬挂式点焊机约70 % 为160 kVA 的,约30 % 为200 kVA 的。二十世纪九十年代常用的80 kVA、100 kVA以及125 kVA等功率焊机,近年来已无人订货。原因主要有两方面,一是新材料如镀锌钢板、高强度钢板、铝合金板的应用,迫使焊接电流要增加很多;二是考虑到悬挂式点焊机的寿命一般都在十年以上,但焊接变压器的内阻会逐年增加,导致出力逐年减少,所以订货时留有余量。
移动式点焊机中的手提式点焊机将焊接变压器与焊钳制造为一体,没有成本高、阻抗大、笨重的焊接电缆,也有叫做一体化或一体式点焊机的。该类机型与分体式悬挂点焊机比较减轻重量约70 %;借助于平衡器,焊机可在工作空间上任意移动位置,焊机本身也可作垂直或水平任意方向360°转动,焊接系统简便轻巧,操作轻便灵活,能实现全位置焊接。产生焊接电流的焊臂及电极采用插接结构安装于主机上,易拆卸易更换,因此,不同形状、不同长度的焊臂及电极可在同一焊机上互换使用,实现一机多用。由于焊接回路减少,焊机出力能力提高,与悬挂式点焊机比较,可节约电能75 % 以上,同时可减少水、气耗量,并可简化悬挂焊机的桁架结构,节省配套设备,例如供电站的功率以及动力电缆、空气开关的额定参数均可减小,节约安装材料和安装工时。由于该产品节能显著、性价比高,焊接电流出力大,其应用越来越广泛;尤其是在电网增容困难的汽车厂扩大产能工程中,手提式点焊机成为产品。七所高科公司销售的移动式点焊机产品前几年90 % 为悬挂式点焊机,手提式点焊机仅占 10 %;近年来,手提式点焊机销量逐年增加,其产量增加到30 %。其功率参数主要为 25 kVA和 40 kVA,少部分为63 kVA。从功率参数对比也可看出手提式点焊机的节能效果。
固定式点焊机除了在汽车整车厂得到应用外,还大量应用于汽车零部件制造厂。该焊机机身笨重、固定,人工或机器人夹持工件移动,完成焊接。装有凸焊电极台板、对事先预制好凸点的工件完成凸焊工作例如常见的凸焊螺钉螺母的焊机成为凸焊机。一般在用户订货要求时,焊机可实现点焊、凸焊两种功能,也叫做点(凸)焊机。固定式点焊机要求有良好的机械本体强度和抗振动、耐冲击刚度,防止加压时电极移位,保证高质量的焊接需要。同时要采用摩擦系数小的导向轴承,提高连续加压的快速性,尤其是当焊件厚度变化时,电极压力应无显著变化。固定式点焊机焊接回路短、导电截面大,能获得较大的焊接功率和焊接电流。常用的有63 kVA、100 kVA和200 kVA等功率参数焊机,能满足一般低碳钢材料焊接需要。
焊接执行机构点焊钳或点焊枪,大部分为气动或气液动加压方式,依靠直线运动的气缸或在较低气压时提高压力的气—液压增压缸,产生电极压力作为夹紧焊件的动力和维持焊接过程中的锻压力。目前这种常用的加压方式的压力建立时间长,需要设置较长的预压时间才能达到压力的平衡阶段,从而使生产率降低,另外加压时冲击大,加速电极工作面的塑性变形,降低电极寿命,同时会在工件表面上产生压痕,影响焊接表面质量。新型伺服焊钳实现了电极加压软接触,而且达到100 % 加压力的时间比传统气动加压快5倍,较好地解决了传统加压方式存在的问题。新型伺服焊钳具有气电两种动力来源,是电阻焊领域的应用技术,既可采用传统的气(液压)缸也可采用交直流伺服电机作为焊钳驱动装置。
大型客车车身焊装是大型客车生产中的一个重要环节,车身焊装质量是影响大型客车整体质量优劣的重要因素之一。
针对大型客车车身结构特点及其工艺性,在本文中将重点分析焊装工艺、设备、夹具的特点,总结我国大型客车车身焊装生产现状及与国际水平的差距,希望通过我们共同的努力,能不断改进国产大型客车车身焊装生产工艺,提高车身焊装质量。
大型客车车身结构特点
大型客车车身是由底骨架、左/右侧围骨架、前/后围骨架及顶围骨架等6大片骨架经组焊蒙皮而成,是一骨架蒙皮结构。根据客车车身承受载荷程度的不同,可把客车车身概括地分为半承载、非承载、全承载式三种类型。
1、半承载式车身
半承载式车身结构特征是车身底架与底盘车架合为一体。通过在底盘车架上焊接牛腿、纵横梁等车身底架构件,将底盘车架与车身底架进行焊接连接,然后与左/右侧骨架、前/后围骨架及顶骨架组焊成车身六面体。车身底架与底盘车架共同承载,因此称为半承载式车身。
2、非承载式车身
非承载式车身的底架为独立焊制的,是矩形钢管和型钢焊制的平面体结构,比较单薄。车身底架与左/右侧骨架、前/后围骨架及顶骨架组焊成车身六面体,漆后的车身要装配到三类底盘上,由底盘车架承载,因此称为非承载式车身。
3、全承载式车身
全承载式车身底架为珩架结构,由矩形钢管和型钢焊制而成,底架与左/右侧骨架、前/后围骨架及顶骨架共同组焊成车身六面体。漆后的车身采用类似轿车的装配工艺,在车身(底架)上装配发动机、前后桥、传动系等底盘部件,因此客车已无底盘车架痕迹,完全由车身承载,因此称为承载式车身。
三种结构车身的焊装工艺性
1、半承载式车身
半承载式车身是在三类底盘上焊制的,生产中底盘自始至终要经过生产的各个环节,因此在焊装生产中也产生一些工艺问题。如:由于底盘大大增加了车身质量,使车身在焊装线工序运输中不灵便,人工推运困难,往往需要增加机械化输送机构;此外,由于车身六面体合焊时需要在合装设备中定位底盘,为此合装设备需要设计底盘举升机构用于底盘二次定位,因此增加了合装设备造价。目前,国内只有少数小型客车厂或某些客车厂的少量车型因生产技术和生产能力所限仍沿用这种工艺。
2、非承载式车身
非承载式车身在焊装生产中不带底盘,车身结构相对简单,易组焊且重量轻,焊装线工序运输方便,可采用人工推运方式。而且,车身底架平整的下平面易于车身六面体组焊定位,不需要举升二次定位,生产效率高。非承载式结构车身适合大批量生产,目前,国内大型客车厂采用这种生产工艺较多。
3、全承载式车身
全承载式车身的底架是由矩形钢管和型钢焊接的格栅式空间结构,与半承载和非承载车身底架比较,其焊接工作量大,底架夹具结构复杂。此外,行李仓内板、仓门的制作和焊接研配的工作量均较大。但其具有整体刚度好,车身承载程度高、构件受力较均衡、重心低、便于在地板下布置行李仓和空调装置的特点。
从技术角度看,全承载式车身结构是比较理想的结构形式。西方工业发达国家早在上世纪30年代就开始研制了这种结构车身,现在已很普及。而我国在这方面起步较晚,在上世纪90年代中末期才开始引进这种车身技术,目前主要用于豪华大型客车的生产上。
车身焊装工艺分析
1、六大片骨架预制
□前/后围骨架、左/右侧骨架总成
前/后围骨架、左/右侧骨架是由各种矩形钢管和型钢焊制的,采用弧焊工艺。国内客车厂通常采用半自动CO2焊机焊接,国外先进的客车厂在部分分装工序采用弧焊机器人焊接。
左/右侧骨架可采用”人”字形立式夹具,也可采用卧式固定夹具。不同的夹具各具特点,立式夹具节省摆放面积,但需配置电动升降台或踏台; 卧式夹具占用面积较多,操作相对简单。前围骨架总成结构较复杂,一般为驾驶室式空间结构,其夹具为固定式。
在焊装夹具制造水平方面,国内外尚存在一定差距。国外夹具制造精度高,通常采用气动或液压夹具,焊后总成尺寸精度高,调整工作量小;而国内大多数客车厂为节省投资,夹具制造精度较低,大多采用靠模(块)式,配以少量手动夹紧器,焊后总成尺寸精度较差,调整工作量大。
此外,国内客车厂一般采用将各构件在总拼夹具中一次焊接成型的焊装工艺,而国外一般把大总成分解为几个分总成事先预制好,再在总拼夹具中组焊。与国内工艺相比,国外工艺可缩短生产节拍,提高焊装质量,而且操作方便。
□顶围总成
为实现顶蒙皮低位作业,将顶骨架与顶蒙皮的焊接在车身组焊前进行。即形成顶围总成后再进行六大片骨架合装。
由于顶围骨架具有较大的空间曲线,一般采用卧式固定夹具。顶蒙皮与顶骨架之间的联结可采用拉铆、CO2弧焊、电阻点焊等几种形式。
拉铆是客车蒙皮最早采用的装配工艺,该工艺劳动强度大,生产效率低。目前仅用于产量较小、车身外观质量要求不高的客车蒙皮生产。
目前,我国客车车身制造采用的材料大多是表面无镀层的低炭钢板和钢管。由于客车产量所限,考虑涂装生产的经济性,许多客车厂车身总成进行整体前处理难以实现。为提高车身防腐性能,骨架构件和蒙皮件焊前需经磷化处理喷涂底漆,而采用的大多为廉价的导电性差的环氧类底漆。由于环氧类底漆层的存在,采用电阻点焊工艺难以形成牢固的焊点。CO2弧焊工艺则能穿透工件表面导电性差的底漆层牢固焊接,因此这种工艺适用于蒙皮与骨架焊前涂有环氧类底漆的车身蒙皮焊装。其缺点是弧焊破坏底漆层的范围及焊接变形相对较大,顶围防腐蚀性能及外观质量均不如电阻焊工艺; 此外,由于底漆层的存在, 焊接时产生更多的焊烟。
国外先进的客车厂大多采用镀锌钢板和钢管焊制车身。因此,骨架构件和蒙皮件在焊接前不进行前处理,焊后在焊缝区涂磷化液 (有些厂进行骨架整体喷磷处理),然后喷涂底漆。底漆后进行车身蒙皮。由于国外采用的是导电性良好的富锌底漆,因此,其客车蒙皮均采用电阻点焊工艺。电阻点焊工艺在许多方面优于CO2弧焊工艺,其对工件表面的涂层破坏小、焊接变形小、劳动条件好、生产效率高。
目前,在国内客车制造业中,由于价格方面的原因,镀锌钢板和钢管以及富锌底漆用的不很普及,仅在少数客车厂的引进豪华车型中获得应用。个别大型客车厂采用无镀层的普通钢板和钢管焊制车身,为在车身蒙皮工序中采用电阻点焊工艺并提高车身防腐性能,采用车身焊后整体电泳前处理的工艺方法,这种方法由于涂装设备投资及生产运行费用太大,绝大多数客车厂难以采用。还有部分客车厂采用传统的车身制造工艺,即骨架和蒙皮件在零件状态下进行磷化处理喷涂底漆,车身蒙皮前在骨架和蒙皮贴合处进行局部抛磨,去除底漆后再进行电阻点焊的方法,但这种方法劳动强度大, 生产效率低,在客车行业也难以推广。
采用镀锌钢板和钢管焊制客车车身,不但方便蒙皮采用电阻点焊工艺,而且可以显著提高车身防腐蚀性能,代表着客车车身制造材料的发展方向。随着国内经济的发展,钢材及涂料生产技术的进步, 镀锌钢板和钢管以及富锌底漆在客车生产中的应用也将会越来越普及。
国内顶蒙皮电阻点焊设备水平已与国外持平。根据客车产量的不同,可采用手动点焊和自动点焊两种形式。
手动点焊采用悬挂式单面单点焊机或单面双点焊机。单面单点焊比单面双点焊工艺优越,其焊接电流分流小,不易形成虚焊点。自动点焊采用顶蒙皮自动点焊专机,该专机由张紧机构、行走式龙门架和固定在龙门架上的点焊机组成。
顶围漏雨也是困扰客车生产的主要问题之一。生产中一般采用在顶盖边蒙皮和中蒙皮的搭接处焊后涂密封胶的方法,但不能从根本上解决漏雨问题。由于此种工艺投资少,在中小型客车厂仍然采用。
早在20世纪80年代初,国外先进的客车厂就将缝焊技术应用于顶蒙皮焊接,采用缝焊工艺将车顶三条纵向蒙皮焊成一个完整的蒙皮后, 再点焊到顶骨架上,从而彻底杜绝了顶围漏雨问题。20世纪90年代以来国内开发研制的顶蒙皮自动缝焊机在国内客车厂获得了应用。该设备由移动式工作台和安装缝焊机的固定式龙门架组成,设备工作时,工件随着工作台渐进移动,龙门架上的两台缝焊机同时完成两条纵缝的焊接。由于该设备投资较大,一般仅应用于少数大型客车厂。
在顶蒙皮上开天窗孔是顶围生产中的又一生产环节。国外一些客车厂采用活动式冲孔模冲天窗孔。用手电钻在要开天窗孔的蒙皮处钻一小孔, 将上模放在顶蒙皮上方, 下模放在下方, 再将油缸活塞杆穿过中心孔把上下模连结起来, 开通高压油, 上下模合拢冲出天窗孔。这种方法生产效率高, 冲出的天窗孔周边平整光滑, 质量好。目前,国内客车厂仍采用在顶蒙皮上划线,然后用空气等离子切割机切割或用剪刀剪切方法形成天窗孔。这种方法形成的窗孔尺寸精度差, 切剪后修边工作量大, 生产效率低。在此方面国内外尚存在一定差距