1、特点1.1 台车架优化设计,既保证足够的强度和刚度,又结构简单,重量减轻,且外形美观。1.2液压系统采用了液压锁、平衡阀等措施,对液压缸进行液压锁定,同时配套采用了丝杠机械锁定,这样的“双锁定”保证了模板在衬砌状态不变形、不移位,强化了模板的支承刚性,减轻了模板结构重量。1.3 电气系统有全防爆式和不防爆式两种,可用于瓦斯隧道和普通隧道的衬砌施工,这在衬砌台车设备中具有创新性。1.4钢模衬砌台车的研制成功,是对传统隧道衬砌施工方法的重大突破,一次衬砌长度最长可达12m,混凝土注入采用机械化,衬砌效率是传统施工方法的数十倍,可节省大量的人力物力,改善了工人的工作条件。台车可广泛适用于长、短隧道的衬砌施工,同时衬砌、开挖时车辆通行互不干扰,可同时作业,具有良好的经济效益和社会效益。2、工艺原理台车是靠自身具有的支撑体系、模板体系,同时又具有走行系统形成既能快速移动又能快速支撑和拆除的一整套模板系统,根据使用要求可分为明挖台车和暗挖台车。台车由行走机构、台车架、钢模板、模板垂直升降和侧向伸缩机构、液压系统、电气控制系统6部分组成。如图1所示。
1.侧模板 2.顶模板 3.上纵梁 4.垂直升降机构(顶部液压缸和垂直支承丝杠) 5.侧部液压缸、侧向支承丝杠Ⅰ 6.侧向支承丝杠Ⅱ 7.侧向支承丝杠Ⅲ 8.门架立柱 9.门架横梁 10.行走机构 11.下部支承丝杠 图1 钢模衬砌台车的结构⑴ 行走机构 行走机构由主动、被动两部分组成,共4套装置,分别安装于台车架两端的门架立柱下端,整机行走由2套主动行走机构完成,即行走电动机带动减速器,通过链条传动,使主动轮驱动整机行走,被动轮随动。行走传动机构带有液压推杆制动器,以保证整机在坡道上仍能安全驻车。⑵ 台车架 台车架由端门架、中间门架、上下纵梁、斜拉杆、支承杆等组成,各部分通过螺栓联为一体,两端门架支承于行走轮架上,中门架下端装有支承螺杆,衬砌施工时,混凝土载荷通过模板传递到4个门架上,并分别通过行走轮和支承丝杠传至轨道——地面。在行走状态下,螺杆应缩回,门架上部前段装有操作平台,放置液压及电气装置。⑶ 模板 模板是直接衬砌混凝土的工作部件,是由螺栓联为一体的数块顶模和侧模组成,顶模与侧模采用铰接,侧模可相对顶模绕销轴转动,支模时,顶部液压缸将顶模伸到位,再操纵侧向液压缸,将侧模伸到位,调整顶部、侧部支承丝杠、完成支模;收模时,按上述相反顺序实施。不需拆模板,采用衬砌台车提高了衬砌质量和施工效率,降低了劳动强度,暗挖台车每块模板上有工作窗口,做为灌注混凝土时的观察窗口,同时在顶部预留有注灰口。⑷ 液压系统 由电动机、液压泵、手动换向阀、垂直及侧向液压缸、液压锁、油箱及管路组成,其功能是快捷、方便地完成支收模、即顶模升降和支承侧模。手动换向阀分别控制模板垂直升降和两侧模的侧向伸缩,当液压缸将模板支承到位后,再调整支承丝杠到位,灌注混凝土对模板产生的垂直和侧向载荷主要由液压缸和丝杠承载。3、应用实例⑴ 北京地铁四号线标段北京地铁四号线标段工程包括三个单位工程,即设计起点-马家楼区间工程、马家楼站工程和马家楼站至石榴庄区间工程。其中设计起点-马家楼站区间包含两部分,即出入段线和正线起点至马家楼站。出入段线起自马家楼站南端,与马西路并行至南四环北侧,右转沿南四环辅路西行穿过佑外大街,最后北转进入马家堡车辆段。明、暗挖隧道工程分别采用明、暗挖钢模衬砌台车施工,通过这种施工方法的应用减少了施工投入的人力、物力,降低了职工的劳动强度,提高了隧道施工的机械化程度。⑵ 北京地铁四号线第四标段北京地铁四号线第四合同段工程南起角门北站,沿马西路下穿马草河后向东偏移,经南三环、万芳亭公园、凉水河、京山铁路后到达北京南站,然后经南二环路、南护城河,沿菜市口南大街北行至陶然亭站,全线总长为7552m。该工程包含两座车站和三个区间,即北京地铁四号线北京南站工程、北京地铁十四号线北京南站工程、北京地铁四号线角门北站-北京南站区间、北京地铁四号线北京南站-陶然亭站区间、北京地铁十四号线北京南站预留工程区间。其中北京地铁四号线角门北站-北京南站区间和北京南站-陶然亭站区间暗挖工程总长1217m,均采用模板台车进行隧道二衬施工。
免责声明:本商铺所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责,一比多公司对此不承担任何保证责任。
友情提醒:为保障您的利益,降低您的风险,建议优先选择商机宝付费会员的产品和服务。