南京数控机床有限公司
诚信指数 0
一站通留言 客户留言 联系我们 联系我们 收藏此网站
首页
公司介绍
企业新闻
产品列表
招聘信息
客户留言
search 搜索网站中其它产品:
南京卧式数控车床批发-卧式数控车床批发2010最优惠!
南京卧式数控车床制造商-卧式数控车床制造商2010权威
南京卧式数控车床生产商-卧式数控车床生产商
您现在的位置:南京数控机床有限公司 > 企业新闻
 
企业新闻
立车控制系统的数学模型
发布日期:2012-02-22

描述系统动态特性的数学表达式,称为控制系统的数学模型。为了对被控系统进行控制,必须建立起控制量与被控制量之间的数学关系式。
  对于实际的控制系统,要想建立起恰当的数学描述,通常不是一件容易的事,除了要选择合适的建模方法之外,还要处理好模型简化等问题。为了准确的描述控制量与被控制量之间的数学关系,一般要涉及各种影响因素和情况,往往导致其关系式变得非常复杂。要求控制量与被控制量之间的关系越准确,其数学模型也就是越复杂。过于复杂的模型,既不便于研究,也不利于控制系统的实现。为了避免出现这种情况,一般需要做出一些合理的假设和简化,以便将系统适当的理想化。理想化的物理系统通常称作物理模型。物理模型的数学描述就是数学模型。因此,在建立数学模型时,需要在模型的简化性与分析结果的性之间做出某种折衷。这既需要丰富的实践经验和坚实的理论基础,又需要一定的处理技巧。
  实质上,建模过程是对控制系统特别是对被控对象进行调差研究的过程。只有准确的分析出哪些物理变量和相互关系是可以忽略的,哪些是对模型的准确度有决定性影响而必须考虑的因素,才能建立起既比较简单又能较准确地反映实际无力对象的模型。一个控制系统数学模型建立的好坏与否,最终是由实验来决定的。
  为了便于处理,同学们在学习过程中所遇到的建模问题,一般都是根据给定的物理模型进行的,很少直接从实际的被控对象开始。
  在建模中经常遇到的另一个问题是线性化问题。严格地讲,实际的物理系统都是分线性系统,之是非线性的程度有所不同而已。然而,许多系统在一定条件下可以近似的是做线性系统。线性系统具有其次性和叠加性,可以大为简化系统的设计与分析。在控制工程中经常采用的方法是:首先建立简化的尽可能线性化的模型,在此基础上求得系统的近似特性。必要时,在采用较复杂的模型做进一步的研究。这种逐步近似地研究方法是工程上常用的方法。
  应该指出,并非富哦有的控制系统都能采用线性化的处理方法。对于一些非线性较强的系统采用非线性的研究方法加以处理。
  控制系统数学模型的表达形式有多种多样,但由于都是动态系统,因此其数学模型的最基本行驶时微分方程。古典控制理论着重研究系统的输入与输出建的关系,因此主要采用传递函数形势以及在其基础上发展出来的频域模型。现代控制理论则使用状态空间表达式。
  建立数学模型的基本方法有两种,既解析法或机理分析法以及实验辨实法。对于一些较简单的系统,可以根据系统本身遵循的物理定律列出数学表达式;而对于复杂的机械系统,常常无法用解析法进行建模,一般需要先进行系统辨识,然后建立其数学模型。实际上只有很少一部分系统的数学模型能够根据机理用分析推倒的方法求得,大多数的系统则需要用实验辨识的方法去建立其数学模型。
再用解析法进行输入-输出微分方程描述时,首先要确定系统的输入量和输出量。控制量和扰动量均为系统的输入量,被控制量则成为系统的输出量。其次通过分析研究,提出一些合乎实际的简化系统的假设。接下来去是根据相关定理或定律列出描述系统运动规律的一组微分方程。最后消去中间变量,求出描述系统输入与输出关系的微分方程。通过数学模型,可以确定被控制量与给定量或扰动量之间的关系,为以后进行分析或设计创造条件。
 

免责声明:本商铺所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责,一比多公司对此不承担任何保证责任。

友情提醒:为保障您的利益,降低您的风险,建议优先选择商机宝付费会员的产品和服务。


南京数控机床有限公司   地址:溧水经济开发区   邮政编码:211200
联系人:张小姐   电话:025-86993881   手机:12345678912   
技术支持:一比多  |  免责声明 | 隐私声明
增值电信业务经营许可证:沪B2-20070060     网站Icp备案号:沪ICP备05000175号
<%---站点编号 ----%> <%---页面编号 ----%> <%---页面参数1 ----%> <%---页面参数2----%> <%---页面参数3 ----%>