f1yj4m半导体激光器发射的激光谱宽小于 0.0001nm,是红外光源谱宽的 1/106,远小于红外光源谱宽和被测气体单吸收谱线宽度,其频率调制扫描范围也仅包含被测气体单吸收谱线(半导体激光吸收光谱技术也因此被称为单线光谱技术),因此成功消除了背景气体交叉干扰影响。不受被测气体环境参数变化干扰被测气体环境参数—温度或压力变化通常导致谱线强度和展宽发生变化,对温度或压力信号不加修正就会影响测量结果。而TDLAS技术是对被测气体单一吸收谱线进行分析,因此可较容易地对温度、压力效应进行修正。为此系统内置了温度和压力自动修正功能,能根据实际测量得到的被测气体温度和压力对气体成分测量值进行自动修正,从而可实现精确的在线气体分析。
综上所述,单线光谱技术、激光波长扫描技术和环境参数自动修正技术使 TDLAS 技术可以被用于实现气体的在线分析,因此比非分光红外等传统采样气体分析系统具备更强的环境适应性。
![](http://file.btoe.cn//image/uploadImage/wjtClient/335833782734853/20221027/96ddd06e-43ad-4136-83d8-fc21de7e3b68.jpg)
气体分析仪在化工行业的应用已经十分的广泛,作为一种过程控制仪表,为化工生产过程控制、指导工艺提供了重要数据。使得工艺控制更适时、更准确,实现了生产最优化和效益最大化。
不过在实际应用过程中,有很多的气体分析仪无 ** 常、可靠、持续的投入到运行中,无法发挥其真正的作用,主要原因就是对气体分析仪表运行条件认识不足,预处理单元没有发挥真正的作用,从而制约了气体分析仪的使用。
![](http://file.btoe.cn//image/uploadImage/wjtClient/335833782734853/20221027/a14284a4-96cf-4aa3-8b67-bedc7480452e.jpg)
高质量的硫化氢气体分析仪时常会被放置在石油天然气钻井平台因为石油天然气钻井平台时刻都需要测量空气当中的危险气体含量,以此来保证在钻井平台的人们身处的环境是安全可靠的,当空气当中的危险气体含量超标时硫化氢气体分析仪便会即刻得出数据并传输到工作人员的电脑当中以此提醒人们。
评价高的硫化氢气体分析仪还会被运用在零度以下的环境当中,因为在一些温度过低的环境当中有些仪器是无 ** 常运行的而硫化氢气体分析仪却能够在零度以下的环境当中正常的运转,能够帮助人们在极低的温度下得出较为准确的数据。