f1yj4m激光过程气体分析系统基于半导体激光吸收光谱技术(TDLAS),即“单线光谱”测量技术。系统采用可调制的半导体激光器为发光光源,通过调制半导体激光器的工作电流强度来调制激光频率,使激光扫描范围略大于被测气体的单吸收谱线。从而使半导体激光器发射的特定波长的激光束在穿过测量管时,被被测气体选频吸收,从而导致激光强度产生衰减。于是系统利用不同气体成分均有不同的特征吸收谱线及气体浓度和红外或激光吸收光谱之间存在的 Beer-Lambert 关系,通过检测吸收谱线的吸收大小(即激光强度衰减信息)就可以获得被测气体的浓度。但不同的是,传统非分光红外分析技术使用谱宽很宽且固定波长的红外光源,而 DLAS 技术使用谱宽较小(也就是单色性较好) 且波长可调谐的半导体激光器作为光源。因此,TDLAS技术具有传统非分光红外分析技术无法实现的一些性能优点。

取样检测方式,是通过取样管,将需要检测的气体抽出后送至分析单元进行检测,取样方式下检测方式原理多样,不限于光学原理的分析仪、其他如电化学原理、氧化锆原理、物理原理等,实际可根据客户安装现场实际工况来确定使用那种原理。
需要使用气体分析仪、气体分析系统的场合,大多数是工业场合。如精细化工行业、煤化工行业、钢铁冶炼行业、制药行业等。多数工业过程气体,都会存在高温、高粉尘、高水分、腐蚀性、有毒有害等一种或多种的条件。
而气体分析仪又是一种精密的分析仪器,要得到精确的分析检测结果,对分析介质有很高的要求,粉尘、水分、压力、是否存在干扰气体等各种条件必须达到分析条件。

高质量的硫化氢气体分析仪时常会被放置在石油天然气钻井平台因为石油天然气钻井平台时刻都需要测量空气当中的危险气体含量,以此来保证在钻井平台的人们身处的环境是安全可靠的,当空气当中的危险气体含量超标时硫化氢气体分析仪便会即刻得出数据并传输到工作人员的电脑当中以此提醒人们。
评价高的硫化氢气体分析仪还会被运用在零度以下的环境当中,因为在一些温度过低的环境当中有些仪器是无 ** 常运行的而硫化氢气体分析仪却能够在零度以下的环境当中正常的运转,能够帮助人们在极低的温度下得出较为准确的数据。