qGygImk局放检测装置局放传感器与局放数据处理终端应采用模块化设计,局放传感器应安装于环网柜机构室和电缆室之间,离电缆头的最少安全距离不少于70mm,能有效检测电缆室内局部放电数据,数据处理终端安装于环网柜二次室内。在环网柜操作机构室面板一体化配置局放监测装置检修窗,检修窗应正对局放传感器,窗口宽×高:80×100mm,检修窗设置可抽动的滑板,正常运行时滑板通过固定螺栓固定,检修窗内的局放传感器和机构时室其他机构有效隔离,避免误触碰,可通过检修窗不停电加装或检修局放触感器。
局部放电检测则是发现电缆绝缘中缺陷,保障电缆安全正常运行的重要手段。当电缆绝缘内部存在缺陷时,会导致电缆内部局部放电的发生。通过检测电缆绝缘内部发生局部放电时所产生的声、光、电信号及化学物质,可以实现对电缆局部放电的检测和定位。
而测量局部放电最大的问题就是抗干扰问题,由电缆特性决定的局部放电频率会被空间中许多的无线电干扰,导致不能够最终确定是干扰信号还是局部放电信号,只有确保抗干扰能力,才能提高试验水平。
局部放电检测特高频(UHF)法检测主要用于检测局部放电产生的电磁波信号,并且广泛应用于GIS。但因为GIS结构可对其产生影响,局放产生的电磁信号的波形与幅值等参数在其通过GIS传播至UHF传感器时发生变化,导致评估局部放电源信号的复杂性大大增加。因此,针对局放电磁波信号在GIS中传输特点的研究,对特高频法十分有意义。GIS为同轴结构,信号传输特性与频率密切相关。对工频下的传输特性可利用电气集总参数来等效,瞬态信号传输时应看作分布参数的传输线,对微波则应视为同轴波导。
据实验分析,局放信号在GIS同轴结构中以横向磁波(Transverse Magnetic-TM)和横向电波(Transverse Electric-TE)进行传输。此外,GIS的特性阻抗与波阻抗因其存在绝缘子而不连续,导致高频波数次折反射其内部结构中。因此,局放电的UHF信号异常复杂。