无填料喷雾式冷却塔虽然比填料式冷却塔在降温上有了很大的改善,但是其结构和使用情况还不完善,仍然有待进一步改进。下面针对现有的喷雾冷却塔在结构上的缺点提出几点改进思路:
(1)利用塔内有效高度
现在的喷雾冷却塔在喷头设计上有一定的缺陷,因为在热水上塔压力较高时,由于目前采用的喷头技术上的缺陷,水被喷头喷出的高度有限,为了使向上喷出的水达到点(即以不飞出收水器为极限),喷雾喷头的位置也相应较高,这样液滴在下落时利用了塔内的高度,但喷头以下的高度在水滴向上飞行过程中没有利用,首先损失了水的压力,其次使水在塔内的停留时间减少。在热水上塔压力较低的情况下,喷雾喷头的位置就必须设计得较低,利用静压使热水从喷头喷出时具有一定的喷出速度,以保证热水能形成喷雾状态。但在这种情况下,液滴无法达到收水器的高度,喷头上部的部分空间没有被有效地利用,难以达到理想的冷却效果。可以说,现有的喷雾式冷却塔设计主要受喷头喷水高度的限制,因此喷头的结构设计还有待进一步地改进。
(2)减少喷头数量,提高喷头效率
水从喷头飞出后以细小液滴的形式和空气进行换热是的,但是塔内喷头数量多,会导致相应的布水管线复杂,细小液滴在下落时遇到管线会在其外表面凝聚,形成小的水流向下淌,然后降落,这样会减少水与空气的接触面积,降低冷却效果。现有的喷雾装置所使用的喷头通常每小时的喷量是3吨,冷却水量在500吨的冷却塔需要喷头多达167个,这样多的喷头需要在塔内分布很多的支管,从而使细小液滴在下落到这些支管上的时候凝聚。
现在使用的喷头,水从喷孔喷出时只能旋出一层水流,如果能够改进喷头的结构,按角度和高度不同分出多层水流,则单个喷头的喷量就会增加,这对于改善塔内的气水分布也是很重要的。因此,如何使单个喷头的设计喷量增加,减少喷头数量,同时尽量使水均匀分布开来并形成细小的液滴,是将来喷头设计时应着重考虑的一个问题。
(3)应用水流喷射技术
喷雾技术的应用在国外的研究已经达到了较高的水平,据美国Baitore Airced公司的设计成果,采用水流喷射技术,冷却塔不但没有填料,风机也省去了,但是热水需要达到一定的压力。热水通过压力喷头喷向塔内,同时带入大量的空气,空气和水流在塔内分散、扰动并充分地接触,在接触和蒸发过程中完成热量的传递,使水得到充分的冷却。由于没有风机,这种冷却塔的运行噪音较小。
从热力学角度,无填料喷雾冷却塔和传统填料冷却塔都属于湿式冷却塔,主要通过水与空气直接接触时的热湿交换进行热量传递。热湿交换的结果是热量由水传给空气,水温下降,空气温度和含湿量增加。
由热力学理论可知,温差是传热过程的推动力,而水蒸汽分压力则是湿(质)交换的推动力。空气与水接触时,部分水吸收主体水的热量,蒸发形成水蒸汽,水蒸汽很快进入附近空气中,在水表面形成饱和空气边界层。饱和空气边界层和主流水之间存在热传导,同时与主流空气之间存在分子扩散和紊流扩散。正是这些扩散作用,使得边界层的饱和空气与主流空气不断掺混,主流空气越来越接近饱和状态,因此,水与空气的热湿交换过程可以视为水蒸发吸热过程、水与饱和空气边界层之间的导热过程和主流空气与边界层空气不断混合过程的叠加。假定与空气接触的水质量无限大,空气与水的接触时间无限长,即在所谓极限条件下,那么全部空气都能达到等于水温的饱和状态。而在冷却塔系统中,极限情况就是水温降低到进入冷却塔的空气初状态下的湿球温度。