在现有的机械零件设计手册中,反映的主要有以下3种类型:
第1类主要用于精密机械,对配合的稳定性要求很高,要求零件在使用过程中或经多次装配后,其零件的磨损极限不超过零件尺寸公差值的10%,这主要应用在精密仪器、仪表、精密量具的表面、极重要零件的摩擦面,如汽缸的内表面、精密机床的主轴颈、坐标镗床的主轴颈等。
第2类主要用于普通的精密机械,对配合的稳定性要求较高,要求零件的磨损极限不超过零件尺寸公差值的25%,要求有很好密合的接触面,其主要应用在如机床、工具、与滚动轴承配合的表面、锥销孔,还有相对运动速度较高的接触面如滑动轴承的配合表面、齿轮的轮齿工作面等。
第3类主要用于通用机械,要求机械零件的磨损极限不超过尺寸公差值的50%,没有相对运动的零件接触面,如箱盖、套筒,要求紧贴的表面、键和键槽的工作面;相对运动速度不高的接触面,如支架孔、衬套、带轮轴孔的工作表面、减速器等等。
机械零件在此我们对机械设计手册中的各类表值进行统计分析,将旧的表面粗糙度国家标准(GB1031—68)转换为参照采用国际标准ISO颁布的1983年的新的国家标准(GB1031—83),采用优先选用的评定参数,即轮廓算术平均偏差值Ra=(1)/(l)∫l0|y|dx。并采用Ra优先选用的系列数值,推导出表面粗糙度Ra与尺寸公差IT之间的有关关系式为
第1类:Ra≥1.6 Ra≤0.008×IT
Ra≤0.8Ra≤0.010×IT
第2类:Ra≥1.6 Ra≤0.021×IT
Ra≤0.8Ra≤0.018×IT
第3类:Ra≤0.042×IT
一、材料的使用性能——选材的最主要依据
指的是零件在使用时所应具备的材料性能,包括机械性能、物理性能和化学性能。对大多数零件而言,机械性能是主要的必能指标,表征机械性能的参数主要有强度极限σb、弹性极限σe、屈服强度σs或σ0.2、伸长率δ、断面收缩率ψ、冲击韧性ak及硬度HRC或HBS等。这些参数中强度是机械性能的主要性能指标,只有在强度满足要求的情况下,才能保证零件正常工作,且经久耐用。在材料力学的学习中,已经发现,在设计计算零件的危险截面尺寸或校核安全程度时所用的许用应力,都要根据材料强度数据推出。
二、材料的工艺性能
材料的加工工艺性能主要有:铸造、压力加工、切削加工、热处理和焊接等性能。其加工工艺性能的好坏直影响到零件的质量、生产效率及成本。所以,材料的工艺性能也是选材的重要依据之一。
(1)铸造性能:一般是指熔点低、结晶温度范围小的合金才具有良好的铸造性能。如:合金中共晶成分铸造性。
(2)压力加工性能:是指钢材承受冷热变形的能力。冷变形性能好的标志是成型性良好、加工表面质量高,不易产生裂纹;而热变形性能好的标志是接受热变形的能力好,抗氧化性高,可变形的温度范围大及热脆倾向小等。
(3)切削加工性能:刀具的磨损、动力消耗及零件表面光洁度等是评定金属材料切削加工性能好坏的标志,也是合理选择材料的重要依据之一。
(4)可焊性:衡量材料焊接性能的优劣是以焊缝区强度不低于基体金属和不产生裂纹为标志。
(5)热处理:是指钢材在热处理过程中所表现的行为。
如过热倾向、淬透性、回火脆性、氧化脱碳倾向以及变形开裂倾向等来衡量热处理工艺性能的优劣。
总之,良好的加工工艺性可以大减少加工过程的动力、材料消耗、缩短加工周期及降废品率等。优良的加工工艺性能是降低产品成本的重要途径。
三、材料的经济性能
每台机器产品成本的高低是劳动生产率和重要标志。产品的成本主要包括:原料成本、加工费用、成品率以及生产管理费用等。材料的选择也要着眼于经济效益,根据国家资源,结合国内生产实际加以考虑。此外,还应考虑零件的寿命及维修费,若选用新材料还要考虑研究试验费。