在加工塑料和弹性体材料时,采用离子氮化和硬性材料PVD镀层的组合工艺处理方法可有效遏制磨损、冷焊、腐蚀和材料堆积等问题。该组合工艺除了提高表面硬度和抗化学能力外,还可优化强度和韧性等性能。
进行塑料加工时如何避免磨损、腐蚀以及材料堆积是一个关键的问题。因此在具体应用中,表层、加工面及模具表面三者之间必须合理匹配。在等离子渗氮处理后沉积合适的硬质膜是一种有效的方法。等离子辅助化学热处理层及涂层的组合应用在有效改善产品性能的同时还可降低单位成本。
同时,采用有效方式对应用于塑料加工领域的工具表面进行改性也已经变得越来越普遍。而成功的关键在于是否对工具及其表面特性有正确的理解。而塑料加工应用中机械设备及模具制造状况会直接影响到塑料材料与工具表面的化学反应状况。
工艺特点
等离子渗氮是一种十分有效的生成界面膜层的热处理方式。辉光放电等离子体中氮扩散进入膜层中,从而增强工件表面硬度。工艺过程中待处理工件为阴极,通入氢气及氮气的混合气体,在数百伏特及50~500Pa压力下对阳极施偏压。阴极势降中,由于基体表面温度高达450℃以上,氮离子获得加速并撞击基体表面从而氮元素渗入工具内部。通过这种方式可形成含铁或铬、钼、铝及镁等的氮化物化合层及扩散层。其表面硬度可达1000HV,甚至更高。通常工件表面主要是被称作为白层的铁氮化合物。氮含量可以根据应用需要进行调节,甚至完全抑制以便为后续的硬质材料涂层创造更好的表面条件。生成的扩散层从工件表面至核心几十毫米的硬度降低非常平缓。
在工业化沉积硬质膜方面,电弧蒸发工艺因其简单便捷而占据着非常重要的地位。工艺过程中,镀层金属因为所产生的电弧在表面边界快速移动而获得蒸发、电离,在工件底盘通负偏压情况下,金属离子加速撞击到工件上。电弧蒸发工艺单纯采用物理方法使金属蒸发,而不包括任何中介挥发性化合物,因此是一种典型的PVD(物理气相沉积)工艺。通过添加含氮或含碳气体,可形成氮化物和碳化物金属薄膜。薄膜具有非常高的微硬度、低摩擦性能和很好的化学惰性。通常当工艺温度在180℃以上时,可以获得高质量的镀层。因此,PVD工艺也可以适用于渗碳钢。氮化和涂层技术的特点使对总体长度达4m的工件进行组合处理成为可能。同时,还可组合处理直径1.5m、长度2m的大组件。
工具疲劳
当材料的选择和热处理类型以优化工件表面的抗磨损性能为目的时,常常会损坏核心材料的硬度,因此工件容易形成一定程度的裂缝和破损。离子氮化作为一种边界层热处理方法,使边界层高硬度和核心韧度的兼有成为可能。根据材料和氮化工艺,表面硬度可达到1000HV以上。氮化硬度的深度可以通过工艺温度和时间进行调节,根据其要求深度可以从几个微米到几十个毫米。大量氮的掺入使边界层中产生残余压应力。来自外界的交变载荷叠加在此静态压应力之上。在边界上产生的张应力减小。同样,残余张应力位移至组件的裂缝不敏感内部区域。结果反向弯曲应力下的疲劳强度增加。
磨损
由于典型磨损颗粒的高硬度,离子氮化不提供对磨损的持久保护。
PVD硬质膜的显微硬度高达2000HV之上,因此非常适合于微型切削。硬质宏观大颗粒物体通常具备高脆性特征,在疲劳状况下容易碎成小块,直到足以承载疲劳负荷为止。例如,窗户玻璃是脆性且易受到损坏,而玻璃纤维却是柔性的,因此往往用于改进塑性材料的强度。实践中,较小的硬质颗粒具有更高的抗磨损能力。
在极大机械应力的情况下,离子氮化和硬质涂层的组合处理便表现出极大的优势,因为表面充分硬化的材料可能会发生塑性变形,并且可能压入基层材料。离子氮化和涂层工艺为工件抗裂缝磨损能力的改善,以及获得具有核心韧性的硬质表面创造了条件。工件韧性通过硬化工艺获得,在进行氮化处理后硬度增加到1000HV。
表面的硬度等级由镀层来直接决定。为了有效地遏制磨损,通常采用硬质镀层,因为它们的硬度通常比典型硬质颗粒的硬度大。离子氮化和CrN镀层的组合处理方式可以有效遏制模具凹槽表面在加工玻璃纤维含量很高的塑料时的磨损现象(见图1)。本案例为用于含35%玻璃纤维材料聚酰胺(PA)材质制造箱的注塑模具。很短时间内在没有镀层的注塑工作区域便出现了大面积冲蚀现象。该工具由冷热作钢材料的成型模、镶件和喷嘴组成