提升热电材料ZT值的方法一般有两种,一为提高其功率因子(S2σ),或降低其热传导系数(κ)。影响功率因子的物理机制包括散射参数、能态密度、载子移动度及费米能级等四项。前三项一般被认为是材料的本质性质,只能依靠更好更纯的样品来改进,而实验上能控制功率因子的物理量为通过改变掺杂浓度来调整费米能级以达到的S2σ值。固体材料热传导系数(κ)包括了晶格热传导系数(κL)及电子热传导系数(κe),即κ=κL+κe。热电材料之热传导大部份是通过晶格来传导。晶格热传导系数(κL)正比于样品定容比热(CV)、声速及平均自由程等三个物理量。同样,前二个物理量是材料的本质,无法改变。而平均自由程则随材料中杂质或晶界的多寡而改变,纳米结构的块材之特征在于具有纳米层级或具有部份纳米层级的微结构,当晶粒大小减小到纳米尺寸时就会产生新的界面,此界面上的局部原子排列为短程有序,有异于一般均质晶体的长程有序状态或是玻璃物质的无序状态,因此材料的性质不再仅仅由晶格上原子间的作用来决定,而必须考虑界面的贡献。重庆中工新材料#
Whall和Parker首先提出二维多层膜结构。因量子井效应对热电材料传输性质的影响,多属于半导体的热电材料,若经MBE(分子束外延)或CVD(化学气相沉积)长成多层膜(或称超晶格)的结构后,其能带结构会因量子效应而使材料能隙加大,再加上膜与膜的界面亦会影响到样品的热传导系数,故将热电材料薄膜化后可预期会大幅改变其ZT值。例如,Koga研究团队理论预测在室温下Si(1.5nm)/Ge(2.0nm)的超晶格结构(于Si0.5Ge0.5基座),其ZT值要比Si块材大70倍。
除了二维的多层膜/超晶格结构外,一维的量子线结构也开始慢慢受到注意,研究者欲通过一维量子线更强的量子局限化效应来进一步提升热电材料之ZT值。例如,将熔融的热电材料Bi、Sb及Bi2Te3经高压注入多孔隙材料如阳极氧化铝或云母,可形成直径约8nm,长度约10m的纳米线。目这些纳米量子线阵列的量测都还在起步的阶段。上述的二维或一维纳米结构都因有基座或多孔隙材料的存在而使热电材料热传导系数的测量或实际应用产生相当的困难。
综上所述,用热电材料制成纳米线,薄膜与超晶格,确能提升热电势S与热电效率,使得ZT值难以提升这一困境的突破绽露了一线曙光,亦再次带动了全球研究热电材料的热潮,而且由理论或实验方面均已证实,具有纳米结构的热电材料要比块材有更好的热电性质。因此,近全世界正投入大量人力、物力于电材料的研发上,希望能制造出高ZT值的热电材料。重庆中工新材料#